High Resolution Land Surface
Parameter Estimation using Earth
Observation technologies and
Machine Learning

Herls PEUEOTAML

So I should be talking about

- Drought monitoring in East Africa
- Land Surface Models
- Earth Observation Data
- Evapotranspiration, Precipitation and Soil Moisture

Another time ...

Modelling the outcome of football matches using Bayesian Statistics

Bayesian Statistics

- Specify your prior distributions.
- Develop a generative model (likelihood)
 - A conditional probability distribution
 - P(Data | Parameters)
- Run an MCMC sampler.
- Return a posterior distribution.
- Check the model outputs.

Stan

- Hamiltonian Monte Carlo Sampler
- Amazing online help
 - https://discourse.mc-stan.org/
- Defines a statistical model through a conditional probability function p(θ|y,x)
- Probabilistic Programming

2 teams / match

380 games.

20 teams / league

3 promoted.

3 relegated

Can we model future performance as a function of past performance?

We can try.

- Two independent Poisson Distributions
- HG ~ Poisson(λ ij)
- AG ~ Poisson(μ_ij)
- λ_ij = log(HA + Offense_i + Defence_j)
- μ_ij = log(Offense_j + Defence_i)
- Parameters:
 - 1 HA for the league
 - 2 parameters per team
- Constraints:
 - Attack and defence scores must sum to 0


```
'``stan
// Priors (uninformative)
offense ~ normal(0, 10);
defense ~ normal(0, 10);
home_advantage ~ normal(-10, 100);

for (g in 1:n_games) {
   home_expected_goals[g] = exp(offense[home_team[g]] + defense[away_team[g]] + home_advantage);
   away_expected_goals[g] = exp(offense[away_team[g]] + defense[home_team[g]]);
   home_goals[g] ~ poisson(home_expected_goals[g]);
   away_goals[g] ~ poisson(away_expected_goals[g]);
}
```

Live Demo ...

What have we captured?

- 1. Unique 'skill' scores for each team
- 2. Skill as a product of attack and defense
- 3. Outcomes the result of two teams relative to one another
- 4. Estimate home advantage (but don't assume it exists or is even positive)

So let's celebrate

What have we missed?

- 1. Scores are not independent
- 2. Lower scoring games are under-predicted
- 3. There is no time varying element in the model

What a load of rubbish ...

Loads of interesting work ...

- https://twiecki.github.io/blog/
- http://opisthokonta.net/
- http://pena.lt/y/
- https://web.archive.org/web/20150526184248/http:// www.sportshacker.net/posts/
- https://betanalpha.github.io/assets/case_studies/ principled_bayesian_workflow.html
- Maher (1982)
- Dixon and Coles (1994)
- Karlis and Ntzoufras (2012)

$$y_n = \alpha + \beta x_n + \epsilon_n$$
 where $\epsilon_n \sim \text{Normal}(0, \sigma)$.

This is equivalent to the following sampling involving the residual,

$$y_n - (\alpha + \beta X_n) \sim \text{Normal}(0, \sigma),$$

and reducing still further, to

$$y_n \sim \text{Normal}(\alpha + \beta X_n, \sigma).$$

This latter form of the model is coded in Stan as follows.

```
data {
  int<lower=0> N;
  vector[N] x;
  vector[N] y;
}
parameters {
  real alpha;
  real beta;
  real<lower=0> sigma;
}
model {
  y ~ normal(alpha + beta * x, sigma);
}
```